ENGINEERING LEARNING CENTER

Updating failed. You are probably offline.

Resource Description /
Textbook Required Advanced Engineering Maths By R. K. Jain, S. R. K. Iyengar /
Recommended Reading Linear Algebra: A Modern Introduction by David Poole 
 
Elementary Linear Algebra  –  Howard Anton & Chris Rorres 
/
Other Resources Cue Math website, Internet search for practice. /
Week Topic Chapter/ 
Pages 
1Introduction to Matrices 
•        Matrices 
•        Types of Matrices 
•        Addition of Matrices 
•        Subtraction of Matrices 
•        Scalar Multiplication 
•        Multiplication of 2 Matrices 
  
  
3.1 – 3.6 
2Properties and Determinants 
  
•        Properties of Multiplication 
•        Traits and patterns in Matrices( Trace, Transpose) 
•        Symmetric and Hermitian Matrices 
•        Determinants of a Matrix 
•        2X2 and 3X3 Matrices 
•         Properties of Determinants 
  
  
  
  
3.6 –  3.11 
  
3-4 
Inverse of a Matrix and Transformations 
·   Minor, Cofactors and Adjoint 
·   Finding Inverse Directly 
·   Row Operations 
·   Applications of Row Operations  
Rank  
Inverse 
Solving Linear Equations 
  
3.12 – 3.20 
 

 
3.53 – 3.61 
  
  
  
5-6 
Vector Spaces 
·   Vector Addition 
·   Vector Subtraction 
·   Their Properties 
·   Subspaces 
·   Linear Independence of Vectors 
·   Dimensions and Basis 
·   Linear Transformations 
  
  
  
3.21 – 3.46 
7Back to Matrices  
·    Normal Form – Column Transformation 
·   PAQ Problem 
·   Symmetric/ Skew Symmetric Questions 
· Orthogonal Matrix Verification Questions 
  
  
  
3.47 – 3.51 
8-9 Midterm Revision Sessions 3 
10Eigen Values 
·   What are Eigen Values? 
·   The Method of finding Eigen Values 
·   Properties of EIgen Values 
·   Exceptions and Tricks in Eigen Values 
  
  
3.62 – 3.70 
  
11-12 
Eigen Vectors 
·   what are Eigen Vectors? 
·   Methodology of finding Eigen Vectors 
·   Properties of EIgen Vectors 
  
3.62 – 3.70 
  
13-14 
Applications of Eigen Values & Vectors 
•        Cayley Hamilton Theorem 
•        Diagonalisation 
•        PAP  
•        Canonical Form 
 
  
3.71 –  3.76 
15Special Matrices 
·   Orthogonal Matrices 
·   Unitary Matrices  
·   Their Eigen Values 
·   Conclusion 
  
  
3.77 – 3.84 
16-17 Final Exam Revision Sessions 3