Educational Resources 

Resource Description /
George Thomas Jr, Maurice Weir, and Joel Hass, Thomas’ Calculus Early Transcendentals, 2008, 13th Edition, Pearson, ISBN-13: 978-1292021232  /
Week Topic Chapters 
Limit of a Function & Limit Laws 
Meaning of Function Limit. 
Graphical Representation of the Limit of a Function. 
Existence of Limits of a Function. 
The Limit Laws. 
The Sandwich Theorem. 
1
2One-Sided Limits 
Approaching Limit from One-Side. 
Meaning of One-Sided Limit. 
The sin(x)/x case. 
Intermediate Value Theorem. 
2
3Continuity 
Concept of Continuity of a Function. 
Continuous Function. 
Limit of Continuous Function & Extension of a Point. 
Extension of a Function
3
4Limits involving Infinity; Asymptotes of Graphs 
Finite Limits as ‘x’ approaches Infinity. 
Horizontal Asymptotes. 
Vertical Asymptotes. 
Infinite Limits. 
4
5The Derivatives as a Function 
Slope, Lines and Tangent Lines. 
Tangents and Derivatives. 
Derivative of a Function using Definition. 
Other Notation and Higher Derivatives.
5
6Derivatives of Trigonometric Functions, The Chain Rule 
Differentiation Formula for Special Functions. 
Rules of Differentiation. 
Review of Trigonometric Functions. 
Derivative of Basic Trigonometric Functions. 
Derivative of Functions involving Trigonometric Functions. 
6
7Implicit Differentiation 
Differentiation of Problems involving both ‘x’ and ‘y’. 
7
8Derivatives of Inverse Functions and Logarithms, Inverse Trigonometric Functions 
Inverse Functions 
Logarithms. 
Derivative of Inverse Functions. 
Logarithmic Differentiation. 
Derivative of Basic Inverse Trigonometric Functions. 
Derivative of Functions that involve Inverse Trigonometric Functions. 
8
9Related Rates, Linearisation and Differentials 
Derivative as Rate of Change. 
Related Rates. 
Linear Approximation. 
9
10 Midterm Revision Sessions 1-9 
11Anti-Derivatives 
Calculation of Anti-Derivatives of a Function. 
Word Problems involving Physics/ Real-Life Scenarios. 
10
12The Definite Integral, The Fundamental Theorem of Calculus 
Definition of the Integral. 
Difference between Differentiation and Integration. 
Properties of Integral. 
Differentiation and Integration as Inverse Processes. 
11
13Indefinite Integrals, The Substitution Method 
Difference between Definite & Indefinite Integrals. 
Integration by Substitution Method. 
12
14Substitution and Area Between Curves, Extreme Values of Functions 
Determination of Maximum & Minimum Values of a Function. 
Local Minima/ Maxima. 
Global Minima/ Maxima. 
The Extreme Value Theorem. 
13
15Monotonic Functions & 1st Derivative Test, Concavity & Curve Sketching 
Definition of Monotonic Function. 
Increasing & Decreasing Function. 
Concave-Upward, Concave-Downward & No-Curvature of Slope of a Function. 
Curve Sketching of a Function. 
14
16Applied Optimisation 
Problems on Optimisation of Area, Perimeter by Function Values Optimisation. 
15
17Final Exam Revision Sessions 10-15 

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to Top